PR10, PR11 Regulator – Standard

Part

Number PR10-04CSS

PR11-04CSS

- · Stainless steel construction handles most corrosive environments
- Large diaphragm to valve area ratio for precise regulation and high flow capacity
- Meets NACE specifications MR-01-75/ISO 15156
- Low temperature version available
- 1/2" port (NPT, BSPP)

Description

Standard Knob, NPT

Stainless Steel T-Handle, NPT

Port

Size

1/2"

1/2"

Products **Stainless Steel**

Regulators

PR10

Operating information		
Operating pressure: PR10 PR11	300 psig (20.7 bar) 300 psig (20.7 bar)	
Operating temperature: PR10 PR11 Option "L" minimum	0°F to 150°F (-18°C to 66°C) 0°F to 180°F (-18°C to 82°C) -40°F (-40°C)	
Flow capacity [†] :	80 scfm (37.8 dm ³ /s, ANR)	
Gauge port:	1/4 inch	
Operation:	Fluorocarbon diaphragm	
Weight:	1.79 lb (0.81 kg)	
Note: Air must be dry enough to avoid ice formation at temperatures below 32°F (0°C)		
t sofm = Standard cubic feet per minute at 100 psig inlet. 75 psig po flow		

secondary setting and 15 psig pressure drop.

Most popular.

Operation

With the adjusting knob / T-Handle (A) turned fully counterclockwise (no spring load), and pressure supplied to the regulator inlet port, the valve poppet assembly (B) is closed. Turning the adjusting knob clockwise applies a load to control spring (C). This load causes the diaphragm (D) and the valve poppet assembly (B) to move downward allowing flow across the seat area (E) created between the poppet assembly and the seat. Pressure in the downstream line is sensed below the diaphragm (D) and offsets the load of spring (C). As downstream pressure rises, poppet assembly (B) and diaphragm (D) move upward until the area (E) is closed and the load of the spring (C) and pressure under diaphragm (D) are in balance. A reduced outlet pressure has now been obtained, depending on spring load. Creating a demand downstream, such as opening a valve, results in a reduced pressure under the diaphragm (D). The load of control spring (C) now causes the poppet assembly to move downward opening seat area (E) allowing air to flow to meet the downstream demand. The flow of downstream air is metered by the amount of opening (E).

Should downstream pressure exceed the desired regulated pressure, the excess pressure will cause the diaphragm (D) to move upward against control spring (C), open vent hole (F), and vent the excess pressure to atmosphere through the hole in the bonnet (H). (This occurs in the relieving type regulator only.)

Stainless Steel

Material Specifications

Adjustment mechanism / springs	316 stainless steel
Body	316 stainless steel
Bonnet / tee handle (PR11)	316 stainless steel
Bonnet / knob (PR10)	Acetal
Bottom plug	316 stainless steel
Poppet	316 stainless steel
Seals	Fluorocarbon

Repair and Service Kits

PR10 bonnet kit (knob included)	CKR10YSS
PR11 bonnet kit	CKR11YSS
2" Face 160 psig (0 to 1100 kPa), gauge (stainless)	K4520N14160SS
Panel mount bracket (stainless)	R10Y57-SS
Panel mount nut, stainless	R10X51-SS
Panel mount nut, plastic	R10X51-P
Pipe nipple, 1/2" 316 stainless steel	616A28-SS
Relieving	RKR10YSS
Non-relieving	RKR10KYSS
0-60 psig spring	SPR-388-1-SS
0-125 psig spring	SPR-389-1-SS
0-250 psig spring	SPR-390-1-SS

Filters

Coalescers

Regulators

Regulators

Filter /

Flow Charts

PR10 1/2" Regulator

Product rupture can cause serious injury. Do not connect regulator to bottled gas. Do not exceed Maximum primary pressure rating.

CAUTION:

REGULATOR PRESSURE ADJUSTMENT – The working range of knob adjustment is designed to permit outlet pressures within their full range. Pressure adjustment beyond this range is also possible because the knob is not a limiting device. This is a common characteristic of most industrial regulators, and limiting devices may be obtained only by special design. For best performance, regulated pressure should always be set by increasing the pressure up to the desired setting.

> Parker Hannifin Corporation Pneumatic Division

F13